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Key Points: 10 

• To date, irrigation detection from passive microwave satellites has proven difficult even 11 
over well-known, expansive regions of agriculture 12 

• The new, enhanced soil moisture product from the Soil Moisture Active Passive satellite 13 
can detect irrigation signals in three regions 14 

• Satellite detection of irrigation increases our ability to understand, monitor, and predict 15 
human impacts on the water cycle.  16 
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Abstract 18 

Irrigation can influence weather and climate, but the magnitude, timing, and spatial extent of 19 
irrigation are poorly represented in models, as are the resulting impacts of irrigation on the 20 
coupled land-atmosphere system. One way to improve irrigation representation in models is to 21 
assimilate soil moisture observations that reflect an irrigation signal to improve model states. 22 
Satellite remote sensing is a promising avenue for obtaining these needed observations on a 23 
routine basis, but to date, irrigation detection in passive microwave satellites has proven difficult. 24 
In this study, results show that the new Enhanced soil moisture product from the Soil Moisture 25 
Active Passive (SMAP) satellite is able to capture irrigation signals over three semi-arid regions 26 
in the western United States. This marks an advancement in earth-observing satellite skill and the 27 
ability to monitor human impacts on the water cycle. 28 

 29 

Plain Language Summary 30 

When farmers use irrigation over large areas, it can make the air cooler and more humid; 31 
sometimes even changing how clouds form and where rain falls. For this reason, it’s important to 32 
know where and when irrigation is used, how wet the soil becomes, and how long it stays 33 
artificially wet. This information is critical for improving weather models, and therefore 34 
forecasts, in the food baskets of the world. However, until now it has been difficult to find 35 
accurate and consistent irrigation practice information over time and for large areas. In this 36 
paper, we show that a NASA satellite which measures soil moisture routinely across the globe is 37 
able to detect wet soil resulting from irrigation in naturally dry environments. This marks an 38 
advancement in earth-observing satellite skill and improves our ability to monitor and predict 39 
human impacts on the water cycle. 40 

1 Introduction 41 

Irrigation is required to meet the world’s food demands, but also drastically alters the 42 
water cycle. By increasing soil moisture (SM), irrigation repartitions the surface energy balance, 43 
increasing evaporation and decreasing sensible heat flux and temperature (Kanamaru & 44 
Kanamitsu, 2008; Bonfils & Lobell, 2007). The altered energy balance can be significant enough 45 
to influence clouds and precipitation through land-atmosphere interactions driven by planetary 46 
boundary layer feedbacks (Kueppers & Snyder, 2011; Qian et al., 2013; Lawston et al., 2015). 47 
Thus, irrigation has shown the potential to impact the atmosphere from local to climate scales 48 
and is increasingly recognized as an important process for representation in weather and climate 49 
models (Sorooshian et al. 2011; Alter et al. 2015; Puma and Cook, 2010; among others).  50 

Two main avenues exist for incorporating irrigation into weather models: 1) irrigation 51 
parameterizations, and 2) data assimilation (DA) of surface observations. Irrigation modules 52 
have grown in complexity (Ozdogan et al. 2010; Evans and Zaitchik, 2010; Leng et al. 2014; 53 
Pokhrel et al., 2016), but consistent irrigation practice and SM data are needed globally to 54 
evaluate and improve these parameterizations (Lawston et al., 2017). DA avoids the need for 55 
assumptions of human practices, but the SM observations must be skillful enough to represent 56 
the irrigation signals (Kumar et al. 2015). Thus, to fully leverage either of these avenues requires 57 
SM observations with high enough spatial and temporal resolution to distinguish differences 58 
between irrigated and non-irrigated areas. 59 
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Satellite remote sensing of SM is a natural choice to address this need, but to date it has 60 
been difficult to detect irrigation in passive SM retrievals. Kumar et al. (2015) showed the 61 
Advanced Scatterometer (ASCAT), the Advanced Microwave Scanning Radiometer 2 62 
(AMSR2), and the Soil Moisture Ocean Salinity (SMOS) were unable to identify seasonal 63 
features of irrigation in the California Central Valley, and showed limited skill at best in 64 
Nebraska. The most recent SM mission, NASA’s Soil Moisture Active Passive (SMAP), has 65 
shown improved information content as compared to previous SM satellites (Kumar et al. 2017), 66 
raising interest in whether SMAP also shows improvement in irrigation detection. In this study, 67 
we explore the utility of SMAP SM retrievals for identifying irrigated regions and timing. While 68 
other satellite-based irrigation detection methods exist (e.g., optical/thermal infrared, Thenkabail 69 
et al., 2009), the ~two-day return time of SMAP and the ability to directly monitor SM 70 
conditions could offer a distinct and advantageous approach for obtaining routine irrigation 71 
information.   72 

2 Data and Methods  73 

2.1 Data 74 

 The SMAP satellite, launched in January 2015, contains a L-band passive microwave 75 
radiometer and uses a single channel retrieval algorithm to provide near surface (i.e., 0-5cm) SM 76 
globally, every 1-3 days at 36 km resolution (Entekhabi et al., 2010). SMAP validation studies 77 
show that the accuracy of the SM products meets mission requirements (<4%; Colliander et al., 78 
2017) and that SMAP can be used to assess hydrologic processes, such as SM drydowns 79 
(Shellito et al., 2016; McColl et al., 2017). The SMAP Level 3 Enhanced SM dataset, used in 80 
this study, exploits the oversampling of the antenna overpasses to enhance the spatial resolution 81 
of the SM retrievals, posted on a 9 km grid (O’Neill et al., 2016). The analysis focuses on 2016, 82 
the only full year available of the Enhanced dataset. 83 

As SM is likely to deviate from the precipitation signal during irrigation periods, Stage 84 
IV quantitative precipitation estimates from the National Center for Environmental Prediction 85 
are analyzed together with SM. These estimates are derived from radar and rain gauges and 86 
gridded at 4 km resolution. Additional in-situ precipitation data are used from the California 87 
Irrigation Management Information System (CIMIS) and the Community Collaborative Rain, 88 
Hail, & Snow (CoCoRaHS) network.  89 

Datasets used to infer local agricultural practices are the Crop Progress and Condition 90 
Bulletins from United States Department of Agriculture National Agricultural Statistical Service 91 
(USDA NASS, 2016) and the Terra True Color Reflectance image dataset from Moderate 92 
Resolution Imaging Spectroradiometer (MODIS). The crop bulletins are useful for assessing 93 
planting, harvest, and growth conditions, while the MODIS images offer a detailed view of the 94 
changing landscape that can corroborate the timing of crop growth and harvest. 95 

2.2 Methods 96 

The aforementioned datasets are analyzed for three regions in the western United States, 97 
known to contain a range of irrigated agriculture (Figure 1). The Sacramento Valley in northern 98 
California, the San Luis Valley in southern Colorado, and the Columbia River Valley in 99 
southeastern Washington are semi-arid regions and receive the majority of their precipitation in 100 
winter. Thus, warm season irrigation is required to cultivate crops, creating a stark contrast in 101 



 

 4 

vegetation, and presumably SM, between the irrigated agriculture and surrounding precipitation-102 
deficient area. These three regions are chosen to explore the outcome of differing irrigation 103 
practices, spatial extent, and other complicating factors on the detection from SMAP. 104 

 105 

Figure 1. Three case study regions: the Sacramento Valley (CCV), California; San Luis Valley 106 
(SLV), Colorado; Columbia River Valley (CRV), Washington, overlaid on percent of areas 107 
equipped for irrigation (Salmon et al. 2015). 108 

For each region, the sensitivity of SMAP SM retrievals to irrigation is analyzed as 109 
follows: 1) spatially for selected dates during and outside of the growing season, 2) temporally at 110 
irrigated and non-irrigated points over a full year, and 3) by using a regional, time-integrated and 111 
normalized metric of SM and precipitation to assess the bulk signal in mid-summer. This third 112 
metric is calculated by summing the SMAP SM retrievals over June and July 2016 and then 113 
normalizing by the minimum and maximum for each study area and time period (hereafter 114 
‘integrated SM’). Only days in which SMAP provides full coverage of each study area are used. 115 
The same calculations are completed using the Stage IV gridded precipitation to obtain the time-116 
integrated, normalized precipitation (hereafter, ‘integrated rainfall’). The resulting maps allow 117 
for quick identification of the wettest areas in terms of SM and those that received the greatest 118 
rainfall in each region. Assuming relatively similar surface and soil properties and topography, 119 
consistently high SM corresponding with relatively low precipitation over the growing season 120 
can be used as an indicator of irrigation. All three analyses were completed for each study area, 121 

CRV

CCV

SLV
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but for brevity, only the complete set of analyses is shown for the first case study. The remaining 122 
analyses are included in the supplement. 123 

3 Results 124 

3.1 Sacramento Valley 125 

The Sacramento Valley, in the northern California Central Valley (CCV), produces 95% 126 
of California’s rice (CA Rice, 2017). Each year, the fields are flooded and aerially seeded in late 127 
April through early May. The water level is sustained throughout the season and then drained 128 
shortly before maturity, typically in August. Harvest begins in September and concludes in 129 
November (CA Rice, 2017).   130 

Figure 2 shows the significant change in landscape appearance from Terra imagery on 131 
February 1, during the wet season, as compared to July 10, during the dry season. The greenness 132 
over the region present in February turns brown by July, with the exception of only the irrigated 133 
rice and higher elevation forests. SMAP SM retrievals identify these contrasts as February is 134 
uniformly wet (> 0.30 cm3/cm3) and July is dry except for the irrigated valley and forest, which 135 
show much higher SM. This figure implies that SMAP is realistically sensing seasonal SM 136 
characteristics and that SM is elevated in the irrigated valley. 137 
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 138 

Figure 2. MODIS Terra true color reflectance for (a) February 1, 2016 and (b) July 10, 2016. 139 
SMAP Level 3 Enhanced SM (cm3/cm3) for (c) February 1, 2016 and (d) July 10, 2016. Triangle 140 
and circle markers indicate the irrigated and non-irrigated sites, respectively.  141 

An irrigated and a non-irrigated site (Fig. 2) are chosen for further analysis of temporal 142 
characteristics. Figure 3 shows SMAP SM at each of these sites (left axis), along with daily 143 
precipitation (right axis) from the Biggs CIMIS site. At both sites, SM is high November through 144 
March (i.e., 0.3 to 0.45 cm3/cm3), then gradually decreases from mid-March into April with the 145 
transition to the dry season. The sites behave similarly as they respond to widespread 146 
precipitation during the wet season. However, the sites abruptly diverge in May, exhibiting 147 
markedly different behavior for the rest of the growing season. The non-irrigated site dries down 148 
through May, responding to a few, small rainfall events. In contrast, SM at the irrigated site 149 
increases dramatically in May reaching and sustaining saturation from mid-May to mid-June. 150 
The timing is consistent with the USDA NASS crop reports that show planting of rice, which 151 
includes flood irrigation, in late April through May. During this time, the SM signal is in direct 152 
opposition to the rainfall (i.e., decreasing intensity, frequency), suggesting that the SM signal is 153 
in fact responding to the onset of flood irrigation. 154 

 155 
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 156 

 157 

Figure 3. SMAP SM at the irrigated site (blue) as compared to the non-irrigated site (red) in the 158 
CCV. Right axis shows daily precipitation from the Biggs CIMIS site. Planting, growth, and 159 
harvest windows are from USDA NASS reports.  160 

Beginning late in June, SM at the irrigated site steadily decreases until rain returns in 161 
October. The SMAP-sensed dry-down is likely a result of two factors. First, the crop report notes 162 
that in early July the rice has begun to “break out” of the water (i.e., “growth” in Fig. 3). This 163 
means the landscape SMAP senses has transitioned from essentially open water to water 164 
underneath vegetation, which increasingly attenuates the moisture signal with growth. Second, 165 
late in the summer the fields are drained before crop maturity and fall harvest (CA Rice, 2017). 166 
The harvest and growth periods are thus consistent with what is seen in the gradual decline of 167 
SMAP SM over the summer period. 168 

Figure 4 shows the integrated SM and rainfall metric maps. As in the 14 July SM 169 
retrievals, the irrigated valley stands out as one of the wettest locations in the region, on par with 170 
the bordering mountains east of the Valley. The integrated rainfall shows that the precipitation 171 
falls along the higher elevations, wrapping around the valley. The irrigated valley is one of the 172 
wettest spots in the region in terms of SM, despite relatively little rainfall. Collectively, these 173 
analyses demonstrate that SMAP is able to identify the spatial signature and seasonal timing of 174 
irrigation in the Sacramento Valley.  175 
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 176 

Figure 4. Time-integrated (June 1 to July 31) and normalized (a) SM and (b) precipitation. 177 
Markers as in Fig. 2.  178 

3.2 San Luis Valley 179 

The San Luis Valley (SLV) sits at an elevation over 2300 meters, nestled in between the 180 
San Juan and Sangre de Cristo mountains. Snow melt is the main source of irrigation water, 181 
through both surface water and aquifer recharge. Irrigation is clustered on the western side of the 182 
valley, where center pivot sprinklers irrigate predominately potatoes, alfalfa, and barley (USDA, 183 
2017). 184 

Figure 5b shows SMAP SM on 14 July 2016, masked out for all locations except the 185 
valley. The magnitude of SM is low, but the irrigated region stands out as being wetter 186 
(i.e., 0.025 cm3/cm3) than the surrounding area. This includes two local SM maxima apparent 187 
only during the growing season (S2). As in the CCV, the precipitation is confined mostly to the 188 
ridge tops and the integrated metrics show relatively high SM in June and July in the irrigated 189 
valley, despite little rainfall (Fig. 5c,d). This suggests that the relative SM and precipitation 190 
metric supports and is consistent with the onset and spatial extent of irrigation in this region. 191 

It should be noted that the time series analyses of irrigated and non-irrigated areas (S2) 192 
are not as clear as in the CCV. A shift in trend is evident, whereby the irrigated area is often 193 
wetter in the growing season and the reverse is true in the off-season. However, these differences 194 
are small and within the range of instrument error (0.04 cm3/cm3), limiting robust conclusions 195 
from the time series analysis alone. These issues exhibit the difficulty of sensing a small area of 196 
irrigation closely bounded by complex topography. 197 
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 198 

Figure 5. (a) MODIS Terra image of the SLV; irrigated valley outlined in yellow. (b) SMAP SM 199 
retrievals on 14 July 2016 overlaid on a topography. Time-integrated and normalized (c) SM and 200 
(d) rainfall; irrigated valley outlined in black.  201 

3.3 Columbia River Valley 202 

The third study region, referred to as the Columbia River Valley (CRV) for simplicity, is 203 
actually centered on the convergence of three major rivers: the Columbia, the Snake, and the 204 
Yakima. As these rivers are the primary source of irrigation water for eastern Washington, the 205 
agriculture clings to the rivers and lowest elevations, creating a distinct pattern of greenness (Fig. 206 
6a). In contrast to the other regions, a greater variety of crops are cultivated, including apples, 207 
grapes, hops, among others (USDA, 2017). Drip irrigation has grown in popularity here, but 208 
sprinkler and flood methods are still most common (USDA, 2013). 209 

The spatial comparison of SM during and outside of the growing season, exhibits 210 
elevated SM in July in areas of irrigation as compared to February, indicating that the irrigation 211 
timing is again captured spatially (S3). Figure 6 (c, d), shows the integrated SM and rainfall 212 
maps. As in the previous cases, rainfall is generally confined to the higher elevations creating a 213 
rain-shadow and precipitation minimum for the valley in June and July. However, the integrated 214 
SM shows elevated SM in the locations of the irrigated agriculture. Even more convincingly, the 215 
shape of the elevated SM resembles the geography of the agriculture.  216 
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 218 

Figure 6. (a) Terra image of the CRV. (b) SMAP SM for 15 July 2016. Time-integrated and 219 
normalized (c) SM and (d) rainfall. 220 

A complicating factor in this region is the irrigation’s proximity to the large river systems 221 
and several lakes. Water bodies within the SMAP field of view could contaminate (i.e. 222 
incorrectly increase) the land SM near the rivers. This proves problematic, not only in the spatial 223 
plots, but also in defining appropriate locations for the time series analysis (S3). As in the SLV, 224 
there is a shift evident between the growing and off-season, but it is unclear to what extent the 225 
nearby water bodies, rather than the irrigated agriculture alone, contribute to this difference.  226 

4 Discussion 227 

The CCV was an ideal region for irrigation detection due to the consistent, extensive 228 
flood irrigation, ancillary observations, and rain-free summer. Flood irrigation proved the easiest 229 
method to detect, while comparatively water-conservative sprinkler irrigation in the SLV and 230 
CRV created subtler SM contrasts. The size of the irrigated area is also factor in detection. 231 
Although a 36x36km uniformly irrigated region could theoretically be captured by a perfectly 232 
aligned overpass, the likelihood of SMAP responding primarily to irrigation increases with the 233 
size of the irrigated area. The scale of irrigation at SLV is likely close to a practical minimum 234 
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required for SMAP-based detection based on these methods and results. In all three case studies, 235 
despite differences in irrigation scale and methods, the bulk, seasonal timing of irrigation was 236 
apparent in the spatial plots and integrated metrics. 237 

The semi-arid, Mediterranean climate in these regions necessitates irrigation and creates 238 
the contrast between the irrigated and surrounding land. The same methods were applied to 239 
eastern Nebraska, where sprinkler irrigation is abundant but mainly used to increase yield, as 240 
precipitation is sufficient for rainfed crops. This means that satellite detection requires the 241 
identification of subtle differences between irrigated and rainfed SM. Not surprisingly, this 242 
proved a challenge for SMAP as no significant differences were found using the methods 243 
presented here.  244 

A distinct advantage of microwave detection is that the most direct and observable 245 
impact of irrigation is in near-surface SM, the main product from SMAP, in contrast to 246 
optical/thermal detection that infers irrigation from surface temperature or other proxies. SMAP 247 
and thermal/optical-based products, such as high-resolution, area and time-limited irrigation 248 
mapping (e.g., Ozdogan and Gutman, 2008; Ambika et al., 2016) can be used together to 249 
evaluate and further develop irrigation physics, triggers, and thresholds in land surface models. 250 
SMAP-based detection also creates the possibility of incorporating the irrigation signal into 251 
models via DA systems to potentially improve forecasts. 252 

As the SMAP record length grows, so too will the ability to mine these data to better 253 
understand human impacts on the water cycle. For example, if water conservation methods are 254 
widely adopted, how does the SM signal respond? SMAP-based irrigation detection can also be 255 
combined with groundwater observations to assist in monitoring agricultural water withdrawals 256 
and consumption. 257 

5 Conclusions 258 

This study demonstrated that in three semi-arid regions, SMAP is able to detect the bulk 259 
seasonal timing and spatial signature of irrigation via elevated SM relative to non-irrigated 260 
adjacent regions. Flood irrigation in the CCV yielded the most dramatic signature and showed 261 
SM dynamics consistent with local irrigation practices. In the other two regions, sprinkler 262 
irrigation resulted in subtler SM impacts that were often within the range of instrument error, 263 
prohibiting the type of intra-seasonal SM analysis that was completed in the CCV. Overall, these 264 
results indicate the potential for SMAP, future SM satellite missions, and enhanced products to 265 
be used for identifying the timing and location of irrigation. This potential will be more readily 266 
achieved with advances in resolution and retrieval over agricultural areas. 267 
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